mirror of
https://github.com/cgzirim/seek-tune.git
synced 2025-12-18 17:34:22 +00:00
Use previous implementation of FindMatches
It works better than the recent, the downside is that it finds matches for silent recordings.
This commit is contained in:
parent
9b10bd2f29
commit
1cf39069c3
1 changed files with 38 additions and 78 deletions
118
shazam/shazam.go
118
shazam/shazam.go
|
|
@ -3,7 +3,6 @@ package shazam
|
||||||
import (
|
import (
|
||||||
"fmt"
|
"fmt"
|
||||||
"math"
|
"math"
|
||||||
"song-recognition/models"
|
|
||||||
"song-recognition/utils"
|
"song-recognition/utils"
|
||||||
"sort"
|
"sort"
|
||||||
"time"
|
"time"
|
||||||
|
|
@ -18,6 +17,7 @@ type Match struct {
|
||||||
Score float64
|
Score float64
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// FindMatches processes the audio samples and finds matches in the database
|
||||||
func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int) ([]Match, time.Duration, error) {
|
func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int) ([]Match, time.Duration, error) {
|
||||||
startTime := time.Now()
|
startTime := time.Now()
|
||||||
logger := utils.GetLogger()
|
logger := utils.GetLogger()
|
||||||
|
|
@ -30,11 +30,9 @@ func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int)
|
||||||
peaks := ExtractPeaks(spectrogram, audioDuration)
|
peaks := ExtractPeaks(spectrogram, audioDuration)
|
||||||
fingerprints := Fingerprint(peaks, utils.GenerateUniqueID())
|
fingerprints := Fingerprint(peaks, utils.GenerateUniqueID())
|
||||||
|
|
||||||
var sampleCouples []models.Couple
|
|
||||||
addresses := make([]uint32, 0, len(fingerprints))
|
addresses := make([]uint32, 0, len(fingerprints))
|
||||||
for address := range fingerprints {
|
for address := range fingerprints {
|
||||||
addresses = append(addresses, address)
|
addresses = append(addresses, address)
|
||||||
sampleCouples = append(sampleCouples, fingerprints[address])
|
|
||||||
}
|
}
|
||||||
|
|
||||||
db, err := utils.NewDbClient()
|
db, err := utils.NewDbClient()
|
||||||
|
|
@ -43,103 +41,65 @@ func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int)
|
||||||
}
|
}
|
||||||
defer db.Close()
|
defer db.Close()
|
||||||
|
|
||||||
couplesMap, err := db.GetCouples(addresses)
|
m, err := db.GetCouples(addresses)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, time.Since(startTime), err
|
return nil, time.Since(startTime), err
|
||||||
}
|
}
|
||||||
|
|
||||||
// Count occurrences of each couple to derive potential target zones
|
matches := map[uint32][][2]uint32{} // songID -> [(sampleTime, dbTime)]
|
||||||
coupleCounts := make(map[uint32]map[uint32]int)
|
timestamps := map[uint32][]uint32{}
|
||||||
for _, couples := range couplesMap {
|
|
||||||
|
for address, couples := range m {
|
||||||
for _, couple := range couples {
|
for _, couple := range couples {
|
||||||
key := (couple.SongID << 32) | uint32(couple.AnchorTimeMs)
|
matches[couple.SongID] = append(matches[couple.SongID], [2]uint32{fingerprints[address].AnchorTimeMs, couple.AnchorTimeMs})
|
||||||
if _, exists := coupleCounts[couple.SongID]; !exists {
|
timestamps[couple.SongID] = append(timestamps[couple.SongID], couple.AnchorTimeMs)
|
||||||
coupleCounts[couple.SongID] = make(map[uint32]int)
|
|
||||||
}
|
|
||||||
coupleCounts[couple.SongID][key]++
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Filter target zones with targets (couples) meeting or exceeding the threshold
|
scores := analyzeRelativeTiming(matches)
|
||||||
threshold := 4
|
|
||||||
filteredCouples := make(map[uint32][]models.Couple)
|
|
||||||
for songID, counts := range coupleCounts {
|
|
||||||
for key, count := range counts {
|
|
||||||
if count >= threshold {
|
|
||||||
filteredCouples[songID] = append(filteredCouples[songID], models.Couple{
|
|
||||||
AnchorTimeMs: key & 0xFFFFFFFF,
|
|
||||||
SongID: songID,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Score matches by calculating mean absolute difference
|
var matchList []Match
|
||||||
var matches []Match
|
for songID, points := range scores {
|
||||||
for songID, songCouples := range filteredCouples {
|
|
||||||
song, songExists, err := db.GetSongByID(songID)
|
song, songExists, err := db.GetSongByID(songID)
|
||||||
if err != nil {
|
|
||||||
logger.Info(fmt.Sprintf("failed to get song by ID (%v): %v", songID, err))
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
if !songExists {
|
if !songExists {
|
||||||
logger.Info(fmt.Sprintf("song with ID (%v) doesn't exist", songID))
|
logger.Info(fmt.Sprintf("song with ID (%v) doesn't exist", songID))
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
if err != nil {
|
||||||
m_a_d := meanAbsoluteDifference(songCouples, sampleCouples)
|
logger.Info(fmt.Sprintf("failed to get song by ID (%v): %v", songID, err))
|
||||||
|
continue
|
||||||
tstamp := songCouples[len(songCouples)-1].AnchorTimeMs
|
|
||||||
match := Match{songID, song.Title, song.Artist, song.YouTubeID, tstamp, m_a_d}
|
|
||||||
matches = append(matches, match)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
sort.Slice(matches, func(i, j int) bool {
|
sort.Slice(timestamps[songID], func(i, j int) bool {
|
||||||
return matches[i].Score > matches[j].Score
|
return timestamps[songID][i] < timestamps[songID][j]
|
||||||
})
|
})
|
||||||
|
|
||||||
// TODO: hanld case when there's no match for cmdHandlers
|
match := Match{songID, song.Title, song.Artist, song.YouTubeID, timestamps[songID][0], points}
|
||||||
|
matchList = append(matchList, match)
|
||||||
|
}
|
||||||
|
|
||||||
return matches, time.Since(startTime), nil
|
sort.Slice(matchList, func(i, j int) bool {
|
||||||
|
return matchList[i].Score > matchList[j].Score
|
||||||
|
})
|
||||||
|
|
||||||
|
return matchList, time.Since(startTime), nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func meanAbsoluteDifference(A, B []models.Couple) float64 {
|
// AnalyzeRelativeTiming checks for consistent relative timing and returns a score
|
||||||
minLen := len(A)
|
func analyzeRelativeTiming(matches map[uint32][][2]uint32) map[uint32]float64 {
|
||||||
if len(B) < minLen {
|
scores := make(map[uint32]float64)
|
||||||
minLen = len(B)
|
for songID, times := range matches {
|
||||||
|
count := 0
|
||||||
|
for i := 0; i < len(times); i++ {
|
||||||
|
for j := i + 1; j < len(times); j++ {
|
||||||
|
sampleDiff := math.Abs(float64(times[i][0] - times[j][0]))
|
||||||
|
dbDiff := math.Abs(float64(times[i][1] - times[j][1]))
|
||||||
|
if math.Abs(sampleDiff-dbDiff) < 100 { // Allow some tolerance
|
||||||
|
count++
|
||||||
}
|
}
|
||||||
|
|
||||||
var sumDiff float64
|
|
||||||
for i := 0; i < minLen; i++ {
|
|
||||||
diff := math.Abs(float64(A[i].AnchorTimeMs - B[i].AnchorTimeMs))
|
|
||||||
sumDiff += diff
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
meanAbsDiff := sumDiff / float64(minLen)
|
scores[songID] = float64(count)
|
||||||
return meanAbsDiff
|
}
|
||||||
}
|
return scores
|
||||||
|
|
||||||
// Function to calculate Dynamic Time Warping distance
|
|
||||||
func dynamicTimeWarping(A, B []models.Couple) float64 {
|
|
||||||
lenA := len(A)
|
|
||||||
lenB := len(B)
|
|
||||||
|
|
||||||
// Create a 2D array to store DTW distances
|
|
||||||
dtw := make([][]float64, lenA+1)
|
|
||||||
for i := range dtw {
|
|
||||||
dtw[i] = make([]float64, lenB+1)
|
|
||||||
for j := range dtw[i] {
|
|
||||||
dtw[i][j] = math.Inf(1)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
dtw[0][0] = 0
|
|
||||||
|
|
||||||
for i := 1; i <= lenA; i++ {
|
|
||||||
for j := 1; j <= lenB; j++ {
|
|
||||||
cost := math.Abs(float64(A[i-1].AnchorTimeMs - B[j-1].AnchorTimeMs))
|
|
||||||
dtw[i][j] = cost + math.Min(math.Min(dtw[i-1][j], dtw[i][j-1]), dtw[i-1][j-1])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return dtw[lenA][lenB]
|
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue