mirror of
https://github.com/cgzirim/seek-tune.git
synced 2025-12-18 01:14:23 +00:00
Reimplement FindMatches
This commit is contained in:
parent
e5222c9505
commit
b3b46cf21b
1 changed files with 81 additions and 37 deletions
118
shazam/shazam.go
118
shazam/shazam.go
|
|
@ -3,6 +3,7 @@ package shazam
|
|||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"song-recognition/models"
|
||||
"song-recognition/utils"
|
||||
"sort"
|
||||
"time"
|
||||
|
|
@ -17,7 +18,6 @@ type Match struct {
|
|||
Score float64
|
||||
}
|
||||
|
||||
// FindMatches processes the audio samples and finds matches in the database
|
||||
func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int) ([]Match, time.Duration, error) {
|
||||
startTime := time.Now()
|
||||
logger := utils.GetLogger()
|
||||
|
|
@ -30,9 +30,11 @@ func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int)
|
|||
peaks := ExtractPeaks(spectrogram, audioDuration)
|
||||
fingerprints := Fingerprint(peaks, utils.GenerateUniqueID())
|
||||
|
||||
var sampleCouples []models.Couple
|
||||
addresses := make([]uint32, 0, len(fingerprints))
|
||||
for address := range fingerprints {
|
||||
addresses = append(addresses, address)
|
||||
sampleCouples = append(sampleCouples, fingerprints[address])
|
||||
}
|
||||
|
||||
db, err := utils.NewDbClient()
|
||||
|
|
@ -41,61 +43,103 @@ func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int)
|
|||
}
|
||||
defer db.Close()
|
||||
|
||||
m, err := db.GetCouples(addresses)
|
||||
couplesMap, err := db.GetCouples(addresses)
|
||||
if err != nil {
|
||||
return nil, time.Since(startTime), err
|
||||
}
|
||||
|
||||
matches := map[uint32][][2]uint32{} // songID -> [(sampleTime, dbTime)]
|
||||
timestamps := map[uint32]uint32{}
|
||||
|
||||
for address, couples := range m {
|
||||
// Count occurrences of each couple to derive potential target zones
|
||||
coupleCounts := make(map[uint32]map[uint32]int)
|
||||
for _, couples := range couplesMap {
|
||||
for _, couple := range couples {
|
||||
matches[couple.SongID] = append(matches[couple.SongID], [2]uint32{fingerprints[address].AnchorTimeMs, couple.AnchorTimeMs})
|
||||
timestamps[couple.SongID] = couple.AnchorTimeMs
|
||||
key := (couple.SongID << 32) | uint32(couple.AnchorTimeMs)
|
||||
if _, exists := coupleCounts[couple.SongID]; !exists {
|
||||
coupleCounts[couple.SongID] = make(map[uint32]int)
|
||||
}
|
||||
coupleCounts[couple.SongID][key]++
|
||||
}
|
||||
}
|
||||
|
||||
scores := analyzeRelativeTiming(matches)
|
||||
|
||||
var matchList []Match
|
||||
for songID, points := range scores {
|
||||
song, songExists, err := db.GetSongByID(songID)
|
||||
if !songExists {
|
||||
logger.Info(fmt.Sprintf("song with ID (%v) doesn't exist", songID))
|
||||
continue
|
||||
// Filter target zones with targets (couples) meeting or exceeding the threshold
|
||||
threshold := 4
|
||||
filteredCouples := make(map[uint32][]models.Couple)
|
||||
for songID, counts := range coupleCounts {
|
||||
for key, count := range counts {
|
||||
if count >= threshold {
|
||||
filteredCouples[songID] = append(filteredCouples[songID], models.Couple{
|
||||
AnchorTimeMs: key & 0xFFFFFFFF,
|
||||
SongID: songID,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Score matches by calculating mean absolute difference
|
||||
var matches []Match
|
||||
for songID, songCouples := range filteredCouples {
|
||||
song, songExists, err := db.GetSongByID(songID)
|
||||
if err != nil {
|
||||
logger.Info(fmt.Sprintf("failed to get song by ID (%v): %v", songID, err))
|
||||
continue
|
||||
}
|
||||
if !songExists {
|
||||
logger.Info(fmt.Sprintf("song with ID (%v) doesn't exist", songID))
|
||||
continue
|
||||
}
|
||||
|
||||
match := Match{songID, song.Title, song.Artist, song.YouTubeID, timestamps[songID], points}
|
||||
matchList = append(matchList, match)
|
||||
m_a_d := meanAbsoluteDifference(songCouples, sampleCouples)
|
||||
|
||||
tstamp := songCouples[len(songCouples)-1].AnchorTimeMs
|
||||
match := Match{songID, song.Title, song.Artist, song.YouTubeID, tstamp, m_a_d}
|
||||
matches = append(matches, match)
|
||||
}
|
||||
|
||||
sort.Slice(matchList, func(i, j int) bool {
|
||||
return matchList[i].Score > matchList[j].Score
|
||||
sort.Slice(matches, func(i, j int) bool {
|
||||
return matches[i].Score > matches[j].Score
|
||||
})
|
||||
|
||||
return matchList, time.Since(startTime), nil
|
||||
// TODO: hanld case when there's no match for cmdHandlers
|
||||
|
||||
return matches, time.Since(startTime), nil
|
||||
}
|
||||
|
||||
// AnalyzeRelativeTiming checks for consistent relative timing and returns a score
|
||||
func analyzeRelativeTiming(matches map[uint32][][2]uint32) map[uint32]float64 {
|
||||
scores := make(map[uint32]float64)
|
||||
for songID, times := range matches {
|
||||
count := 0
|
||||
for i := 0; i < len(times); i++ {
|
||||
for j := i + 1; j < len(times); j++ {
|
||||
sampleDiff := math.Abs(float64(times[i][0] - times[j][0]))
|
||||
dbDiff := math.Abs(float64(times[i][1] - times[j][1]))
|
||||
if math.Abs(sampleDiff-dbDiff) < 100 { // Allow some tolerance
|
||||
count++
|
||||
}
|
||||
}
|
||||
}
|
||||
scores[songID] = float64(count)
|
||||
func meanAbsoluteDifference(A, B []models.Couple) float64 {
|
||||
minLen := len(A)
|
||||
if len(B) < minLen {
|
||||
minLen = len(B)
|
||||
}
|
||||
return scores
|
||||
|
||||
var sumDiff float64
|
||||
for i := 0; i < minLen; i++ {
|
||||
diff := math.Abs(float64(A[i].AnchorTimeMs - B[i].AnchorTimeMs))
|
||||
sumDiff += diff
|
||||
}
|
||||
|
||||
meanAbsDiff := sumDiff / float64(minLen)
|
||||
return meanAbsDiff
|
||||
}
|
||||
|
||||
// Function to calculate Dynamic Time Warping distance
|
||||
func dynamicTimeWarping(A, B []models.Couple) float64 {
|
||||
lenA := len(A)
|
||||
lenB := len(B)
|
||||
|
||||
// Create a 2D array to store DTW distances
|
||||
dtw := make([][]float64, lenA+1)
|
||||
for i := range dtw {
|
||||
dtw[i] = make([]float64, lenB+1)
|
||||
for j := range dtw[i] {
|
||||
dtw[i][j] = math.Inf(1)
|
||||
}
|
||||
}
|
||||
dtw[0][0] = 0
|
||||
|
||||
for i := 1; i <= lenA; i++ {
|
||||
for j := 1; j <= lenB; j++ {
|
||||
cost := math.Abs(float64(A[i-1].AnchorTimeMs - B[j-1].AnchorTimeMs))
|
||||
dtw[i][j] = cost + math.Min(math.Min(dtw[i-1][j], dtw[i][j-1]), dtw[i-1][j-1])
|
||||
}
|
||||
}
|
||||
|
||||
return dtw[lenA][lenB]
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue