mirror of
https://github.com/cgzirim/seek-tune.git
synced 2025-12-18 09:24:19 +00:00
Reimplement FindMatches
This commit is contained in:
parent
e5222c9505
commit
b3b46cf21b
1 changed files with 81 additions and 37 deletions
118
shazam/shazam.go
118
shazam/shazam.go
|
|
@ -3,6 +3,7 @@ package shazam
|
||||||
import (
|
import (
|
||||||
"fmt"
|
"fmt"
|
||||||
"math"
|
"math"
|
||||||
|
"song-recognition/models"
|
||||||
"song-recognition/utils"
|
"song-recognition/utils"
|
||||||
"sort"
|
"sort"
|
||||||
"time"
|
"time"
|
||||||
|
|
@ -17,7 +18,6 @@ type Match struct {
|
||||||
Score float64
|
Score float64
|
||||||
}
|
}
|
||||||
|
|
||||||
// FindMatches processes the audio samples and finds matches in the database
|
|
||||||
func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int) ([]Match, time.Duration, error) {
|
func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int) ([]Match, time.Duration, error) {
|
||||||
startTime := time.Now()
|
startTime := time.Now()
|
||||||
logger := utils.GetLogger()
|
logger := utils.GetLogger()
|
||||||
|
|
@ -30,9 +30,11 @@ func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int)
|
||||||
peaks := ExtractPeaks(spectrogram, audioDuration)
|
peaks := ExtractPeaks(spectrogram, audioDuration)
|
||||||
fingerprints := Fingerprint(peaks, utils.GenerateUniqueID())
|
fingerprints := Fingerprint(peaks, utils.GenerateUniqueID())
|
||||||
|
|
||||||
|
var sampleCouples []models.Couple
|
||||||
addresses := make([]uint32, 0, len(fingerprints))
|
addresses := make([]uint32, 0, len(fingerprints))
|
||||||
for address := range fingerprints {
|
for address := range fingerprints {
|
||||||
addresses = append(addresses, address)
|
addresses = append(addresses, address)
|
||||||
|
sampleCouples = append(sampleCouples, fingerprints[address])
|
||||||
}
|
}
|
||||||
|
|
||||||
db, err := utils.NewDbClient()
|
db, err := utils.NewDbClient()
|
||||||
|
|
@ -41,61 +43,103 @@ func FindMatches(audioSamples []float64, audioDuration float64, sampleRate int)
|
||||||
}
|
}
|
||||||
defer db.Close()
|
defer db.Close()
|
||||||
|
|
||||||
m, err := db.GetCouples(addresses)
|
couplesMap, err := db.GetCouples(addresses)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, time.Since(startTime), err
|
return nil, time.Since(startTime), err
|
||||||
}
|
}
|
||||||
|
|
||||||
matches := map[uint32][][2]uint32{} // songID -> [(sampleTime, dbTime)]
|
// Count occurrences of each couple to derive potential target zones
|
||||||
timestamps := map[uint32]uint32{}
|
coupleCounts := make(map[uint32]map[uint32]int)
|
||||||
|
for _, couples := range couplesMap {
|
||||||
for address, couples := range m {
|
|
||||||
for _, couple := range couples {
|
for _, couple := range couples {
|
||||||
matches[couple.SongID] = append(matches[couple.SongID], [2]uint32{fingerprints[address].AnchorTimeMs, couple.AnchorTimeMs})
|
key := (couple.SongID << 32) | uint32(couple.AnchorTimeMs)
|
||||||
timestamps[couple.SongID] = couple.AnchorTimeMs
|
if _, exists := coupleCounts[couple.SongID]; !exists {
|
||||||
|
coupleCounts[couple.SongID] = make(map[uint32]int)
|
||||||
|
}
|
||||||
|
coupleCounts[couple.SongID][key]++
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
scores := analyzeRelativeTiming(matches)
|
// Filter target zones with targets (couples) meeting or exceeding the threshold
|
||||||
|
threshold := 4
|
||||||
var matchList []Match
|
filteredCouples := make(map[uint32][]models.Couple)
|
||||||
for songID, points := range scores {
|
for songID, counts := range coupleCounts {
|
||||||
song, songExists, err := db.GetSongByID(songID)
|
for key, count := range counts {
|
||||||
if !songExists {
|
if count >= threshold {
|
||||||
logger.Info(fmt.Sprintf("song with ID (%v) doesn't exist", songID))
|
filteredCouples[songID] = append(filteredCouples[songID], models.Couple{
|
||||||
continue
|
AnchorTimeMs: key & 0xFFFFFFFF,
|
||||||
|
SongID: songID,
|
||||||
|
})
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Score matches by calculating mean absolute difference
|
||||||
|
var matches []Match
|
||||||
|
for songID, songCouples := range filteredCouples {
|
||||||
|
song, songExists, err := db.GetSongByID(songID)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
logger.Info(fmt.Sprintf("failed to get song by ID (%v): %v", songID, err))
|
logger.Info(fmt.Sprintf("failed to get song by ID (%v): %v", songID, err))
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
if !songExists {
|
||||||
|
logger.Info(fmt.Sprintf("song with ID (%v) doesn't exist", songID))
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
match := Match{songID, song.Title, song.Artist, song.YouTubeID, timestamps[songID], points}
|
m_a_d := meanAbsoluteDifference(songCouples, sampleCouples)
|
||||||
matchList = append(matchList, match)
|
|
||||||
|
tstamp := songCouples[len(songCouples)-1].AnchorTimeMs
|
||||||
|
match := Match{songID, song.Title, song.Artist, song.YouTubeID, tstamp, m_a_d}
|
||||||
|
matches = append(matches, match)
|
||||||
}
|
}
|
||||||
|
|
||||||
sort.Slice(matchList, func(i, j int) bool {
|
sort.Slice(matches, func(i, j int) bool {
|
||||||
return matchList[i].Score > matchList[j].Score
|
return matches[i].Score > matches[j].Score
|
||||||
})
|
})
|
||||||
|
|
||||||
return matchList, time.Since(startTime), nil
|
// TODO: hanld case when there's no match for cmdHandlers
|
||||||
|
|
||||||
|
return matches, time.Since(startTime), nil
|
||||||
}
|
}
|
||||||
|
|
||||||
// AnalyzeRelativeTiming checks for consistent relative timing and returns a score
|
func meanAbsoluteDifference(A, B []models.Couple) float64 {
|
||||||
func analyzeRelativeTiming(matches map[uint32][][2]uint32) map[uint32]float64 {
|
minLen := len(A)
|
||||||
scores := make(map[uint32]float64)
|
if len(B) < minLen {
|
||||||
for songID, times := range matches {
|
minLen = len(B)
|
||||||
count := 0
|
|
||||||
for i := 0; i < len(times); i++ {
|
|
||||||
for j := i + 1; j < len(times); j++ {
|
|
||||||
sampleDiff := math.Abs(float64(times[i][0] - times[j][0]))
|
|
||||||
dbDiff := math.Abs(float64(times[i][1] - times[j][1]))
|
|
||||||
if math.Abs(sampleDiff-dbDiff) < 100 { // Allow some tolerance
|
|
||||||
count++
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
scores[songID] = float64(count)
|
|
||||||
}
|
}
|
||||||
return scores
|
|
||||||
|
var sumDiff float64
|
||||||
|
for i := 0; i < minLen; i++ {
|
||||||
|
diff := math.Abs(float64(A[i].AnchorTimeMs - B[i].AnchorTimeMs))
|
||||||
|
sumDiff += diff
|
||||||
|
}
|
||||||
|
|
||||||
|
meanAbsDiff := sumDiff / float64(minLen)
|
||||||
|
return meanAbsDiff
|
||||||
|
}
|
||||||
|
|
||||||
|
// Function to calculate Dynamic Time Warping distance
|
||||||
|
func dynamicTimeWarping(A, B []models.Couple) float64 {
|
||||||
|
lenA := len(A)
|
||||||
|
lenB := len(B)
|
||||||
|
|
||||||
|
// Create a 2D array to store DTW distances
|
||||||
|
dtw := make([][]float64, lenA+1)
|
||||||
|
for i := range dtw {
|
||||||
|
dtw[i] = make([]float64, lenB+1)
|
||||||
|
for j := range dtw[i] {
|
||||||
|
dtw[i][j] = math.Inf(1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
dtw[0][0] = 0
|
||||||
|
|
||||||
|
for i := 1; i <= lenA; i++ {
|
||||||
|
for j := 1; j <= lenB; j++ {
|
||||||
|
cost := math.Abs(float64(A[i-1].AnchorTimeMs - B[j-1].AnchorTimeMs))
|
||||||
|
dtw[i][j] = cost + math.Min(math.Min(dtw[i-1][j], dtw[i][j-1]), dtw[i-1][j-1])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return dtw[lenA][lenB]
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue