reimu/htmlcxx/html/tree.h
2018-07-10 13:54:56 +03:00

2027 lines
62 KiB
C++

/*
$Id: tree.h,v 1.3 2005/02/22 04:47:04 davi Exp $
STL-like templated tree class.
Copyright (C) 2001 Kasper Peeters <k.peeters@damtp.cam.ac.uk>
See
http://www.damtp.cam.ac.uk/user/kp229/tree/
for more information and documentation. See the Changelog file for
other credits.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
TODO: - 'Move' members are long overdue; will hopefully be incorporated in the
next release.
- Fixed depth iterators do not iterate over the entire range if there
are 'holes' in the tree.
- If a range uses const iter_base& as end iterator, things will
inevitably go wrong, because upcast from iter_base to a non-sibling_iter
is incorrect. This upcast should be removed (and then all illegal uses
as previously in 'equal' will be flagged by the compiler). This requires
new copy constructors though.
- There's a bug in replace(sibling_iterator, ...) when the ranges
sit next to each other. Turned up in append_child(iter,iter)
but has been avoided now.
- "std::operator<" does not work correctly on our iterators, and for some
reason a globally defined template operator< did not get picked up.
Using a comparison class now, but this should be investigated.
*/
#ifndef tree_hh_
#define tree_hh_
#include <cassert>
#include <cstddef>
#include <memory>
#include <stdexcept>
#include <iterator>
#include <set>
// HP-style construct/destroy have gone from the standard,
// so here is a copy.
namespace kp {
template <class T1, class T2>
void constructor(T1* p, T2& val)
{
new ((void *) p) T1(val);
}
template <class T1>
void constructor(T1* p)
{
new ((void *) p) T1;
}
template <class T1>
void destructor(T1* p)
{
p->~T1();
}
};
template<class T>
class tree_node_ { // size: 5*4=20 bytes (on 32 bit arch), can be reduced by 8.
public:
tree_node_<T> *parent;
tree_node_<T> *first_child, *last_child;
tree_node_<T> *prev_sibling, *next_sibling;
T data;
};
//__attribute__((packed));
template <class T, class tree_node_allocator = std::allocator<tree_node_<T> > >
class tree {
protected:
typedef tree_node_<T> tree_node;
public:
typedef T value_type;
class iterator_base;
class pre_order_iterator;
class post_order_iterator;
class sibling_iterator;
tree();
tree(const T&);
tree(const iterator_base&);
tree(const tree<T, tree_node_allocator>&);
~tree();
void operator=(const tree<T, tree_node_allocator>&);
#ifdef __SGI_STL_PORT
class iterator_base : public stlport::bidirectional_iterator<T, ptrdiff_t> {
#else
class iterator_base {
#endif
public:
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
iterator_base();
iterator_base(tree_node *);
T& operator*() const;
T* operator->() const;
void skip_children(); // do not iterate over children of this node
unsigned int number_of_children() const;
sibling_iterator begin() const;
sibling_iterator end() const;
tree_node *node;
protected:
bool skip_current_children_;
};
class pre_order_iterator : public iterator_base {
public:
pre_order_iterator();
pre_order_iterator(tree_node *);
pre_order_iterator(const iterator_base&);
pre_order_iterator(const sibling_iterator&);
bool operator==(const pre_order_iterator&) const;
bool operator!=(const pre_order_iterator&) const;
pre_order_iterator& operator++();
pre_order_iterator& operator--();
pre_order_iterator operator++(int);
pre_order_iterator operator--(int);
pre_order_iterator& operator+=(unsigned int);
pre_order_iterator& operator-=(unsigned int);
};
class post_order_iterator : public iterator_base {
public:
post_order_iterator();
post_order_iterator(tree_node *);
post_order_iterator(const iterator_base&);
post_order_iterator(const sibling_iterator&);
bool operator==(const post_order_iterator&) const;
bool operator!=(const post_order_iterator&) const;
post_order_iterator& operator++();
post_order_iterator& operator--();
post_order_iterator operator++(int);
post_order_iterator operator--(int);
post_order_iterator& operator+=(unsigned int);
post_order_iterator& operator-=(unsigned int);
void descend_all();
};
typedef pre_order_iterator iterator;
class fixed_depth_iterator : public iterator_base {
public:
fixed_depth_iterator();
fixed_depth_iterator(tree_node *);
fixed_depth_iterator(const iterator_base&);
fixed_depth_iterator(const sibling_iterator&);
fixed_depth_iterator(const fixed_depth_iterator&);
bool operator==(const fixed_depth_iterator&) const;
bool operator!=(const fixed_depth_iterator&) const;
fixed_depth_iterator& operator++();
fixed_depth_iterator& operator--();
fixed_depth_iterator operator++(int);
fixed_depth_iterator operator--(int);
fixed_depth_iterator& operator+=(unsigned int);
fixed_depth_iterator& operator-=(unsigned int);
tree_node *first_parent_;
private:
void set_first_parent_();
void find_leftmost_parent_();
};
class sibling_iterator : public iterator_base {
public:
sibling_iterator();
sibling_iterator(tree_node *);
sibling_iterator(const sibling_iterator&);
sibling_iterator(const iterator_base&);
bool operator==(const sibling_iterator&) const;
bool operator!=(const sibling_iterator&) const;
sibling_iterator& operator++();
sibling_iterator& operator--();
sibling_iterator operator++(int);
sibling_iterator operator--(int);
sibling_iterator& operator+=(unsigned int);
sibling_iterator& operator-=(unsigned int);
tree_node *range_first() const;
tree_node *range_last() const;
tree_node *parent_;
private:
void set_parent_();
};
// begin/end of tree
inline pre_order_iterator begin() const;
inline pre_order_iterator end() const;
post_order_iterator begin_post() const;
post_order_iterator end_post() const;
fixed_depth_iterator begin_fixed(const iterator_base&, unsigned int) const;
fixed_depth_iterator end_fixed(const iterator_base&, unsigned int) const;
// begin/end of children of node
sibling_iterator begin(const iterator_base&) const;
sibling_iterator end(const iterator_base&) const;
template<typename iter> iter parent(iter) const;
template<typename iter> iter previous_sibling(iter) const;
template<typename iter> iter next_sibling(iter) const;
template<typename iter> iter next_at_same_depth(iter) const;
void clear();
// erase element at position pointed to by iterator, increment iterator
template<typename iter> iter erase(iter);
// erase all children of the node pointed to by iterator
void erase_children(const iterator_base&);
// insert node as last child of node pointed to by position (first one inserts empty node)
template<typename iter> iter append_child(iter position);
template<typename iter> iter append_child(iter position, const T& x);
// the following two append nodes plus their children
template<typename iter> iter append_child(iter position, iter other_position);
template<typename iter> iter append_children(iter position, sibling_iterator from, sibling_iterator to);
// short-hand to insert topmost node in otherwise empty tree
pre_order_iterator set_head(const T& x);
// insert node as previous sibling of node pointed to by position
template<typename iter> iter insert(iter position, const T& x);
// specialisation: insert node as previous sibling of node pointed to by position
//pre_order_iterator insert(sibling_iterator position, const T& x);
sibling_iterator insert(sibling_iterator position, const T& x);
// insert node (with children) pointed to by subtree as previous sibling of node pointed to by position
template<typename iter> iter insert_subtree(iter position, const iterator_base& subtree);
// insert node as next sibling of node pointed to by position
template<typename iter> iter insert_after(iter position, const T& x);
// replace node at 'position' with other node (keeping same children); 'position' becomes invalid.
template<typename iter> iter replace(iter position, const T& x);
// replace node at 'position' with subtree starting at 'from' (do not erase subtree at 'from'); see above.
template<typename iter> iter replace(iter position, const iterator_base& from);
// replace string of siblings (plus their children) with copy of a new string (with children); see above
sibling_iterator replace(sibling_iterator orig_begin, sibling_iterator orig_end,
sibling_iterator new_begin, sibling_iterator new_end);
// move all children of node at 'position' to be siblings, returns position
template<typename iter> iter flatten(iter position);
// move nodes in range to be children of 'position'
template<typename iter> iter reparent(iter position, sibling_iterator begin, sibling_iterator end);
// ditto, the range being all children of the 'from' node
template<typename iter> iter reparent(iter position, iter from);
// new style move members, moving nodes plus children to a different location
template<typename iter> iter move_after(iter target, iter source);
template<typename iter> iter move_before(iter target, iter source);
template<typename iter> iter move_ontop(iter target, iter source);
// merge with other tree, creating new branches and leaves only if they are not already present
void merge(sibling_iterator, sibling_iterator, sibling_iterator, sibling_iterator,
bool duplicate_leaves=false);
// sort (std::sort only moves values of nodes, this one moves children as well)
void sort(sibling_iterator from, sibling_iterator to, bool deep=false);
template<class StrictWeakOrdering>
void sort(sibling_iterator from, sibling_iterator to, StrictWeakOrdering comp, bool deep=false);
// compare two ranges of nodes (compares nodes as well as tree structure)
template<typename iter>
bool equal(const iter& one, const iter& two, const iter& three) const;
template<typename iter, class BinaryPredicate>
bool equal(const iter& one, const iter& two, const iter& three, BinaryPredicate) const;
template<typename iter>
bool equal_subtree(const iter& one, const iter& two) const;
template<typename iter, class BinaryPredicate>
bool equal_subtree(const iter& one, const iter& two, BinaryPredicate) const;
// extract a new tree formed by the range of siblings plus all their children
tree subtree(sibling_iterator from, sibling_iterator to) const;
void subtree(tree&, sibling_iterator from, sibling_iterator to) const;
// exchange the node (plus subtree) with its sibling node (do nothing if no sibling present)
void swap(sibling_iterator it);
// find a subtree
// template<class BinaryPredicate>
// iterator find_subtree(sibling_iterator, sibling_iterator, iterator from, iterator to, BinaryPredicate) const;
// count the total number of nodes
int size() const;
// check if tree is empty
bool empty() const;
// compute the depth to the root
int depth(const iterator_base&) const;
// count the number of children of node at position
unsigned int number_of_children(const iterator_base&) const;
// count the number of 'next' siblings of node at iterator
unsigned int number_of_siblings(const iterator_base&) const;
// determine whether node at position is in the subtrees with root in the range
bool is_in_subtree(const iterator_base& position, const iterator_base& begin,
const iterator_base& end) const;
// determine whether the iterator is an 'end' iterator and thus not actually
// pointing to a node
bool is_valid(const iterator_base&) const;
// determine the index of a node in the range of siblings to which it belongs.
unsigned int index(sibling_iterator it) const;
// inverse of 'index': return the n-th child of the node at position
sibling_iterator child(const iterator_base& position, unsigned int) const;
class iterator_base_less {
public:
bool operator()(const typename tree<T, tree_node_allocator>::iterator_base& one,
const typename tree<T, tree_node_allocator>::iterator_base& two) const
{
return one.node < two.node;
}
};
tree_node *head, *feet; // head/feet are always dummy; if an iterator points to them it is invalid
private:
tree_node_allocator alloc_;
void head_initialise_();
void copy_(const tree<T, tree_node_allocator>& other);
template<class StrictWeakOrdering>
class compare_nodes {
public:
bool operator()(const tree_node *a, const tree_node *b)
{
static StrictWeakOrdering comp;
return comp(a->data, b->data);
}
};
};
//template <class T, class tree_node_allocator>
//class iterator_base_less {
// public:
// bool operator()(const typename tree<T, tree_node_allocator>::iterator_base& one,
// const typename tree<T, tree_node_allocator>::iterator_base& two) const
// {
// txtout << "operatorclass<" << one.node < two.node << std::endl;
// return one.node < two.node;
// }
//};
//template <class T, class tree_node_allocator>
//bool operator<(const typename tree<T, tree_node_allocator>::iterator& one,
// const typename tree<T, tree_node_allocator>::iterator& two)
// {
// txtout << "operator< " << one.node < two.node << std::endl;
// if(one.node < two.node) return true;
// return false;
// }
template <class T, class tree_node_allocator>
bool operator>(const typename tree<T, tree_node_allocator>::iterator_base& one,
const typename tree<T, tree_node_allocator>::iterator_base& two)
{
if(one.node > two.node) return true;
return false;
}
// Tree
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree()
{
head_initialise_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(const T& x)
{
head_initialise_();
set_head(x);
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(const iterator_base& other)
{
head_initialise_();
set_head((*other));
replace(begin(), other);
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::~tree()
{
clear();
alloc_.deallocate(head,1);
alloc_.deallocate(feet,1);
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::head_initialise_()
{
head = alloc_.allocate(1,0); // MSVC does not have default second argument
feet = alloc_.allocate(1,0);
head->parent=0;
head->first_child=0;
head->last_child=0;
head->prev_sibling=0; //head;
head->next_sibling=feet; //head;
feet->parent=0;
feet->first_child=0;
feet->last_child=0;
feet->prev_sibling=head;
feet->next_sibling=0;
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::operator=(const tree<T, tree_node_allocator>& other)
{
copy_(other);
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::tree(const tree<T, tree_node_allocator>& other)
{
head_initialise_();
copy_(other);
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::copy_(const tree<T, tree_node_allocator>& other)
{
clear();
pre_order_iterator it=other.begin(), to=begin();
while(it!=other.end()) {
to=insert(to, (*it));
it.skip_children();
++it;
}
to=begin();
it=other.begin();
while(it!=other.end()) {
to=replace(to, it);
to.skip_children();
it.skip_children();
++to;
++it;
}
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::clear()
{
if(head)
while(head->next_sibling!=feet)
erase(pre_order_iterator(head->next_sibling));
}
template<class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::erase_children(const iterator_base& it)
{
tree_node *cur=it.node->first_child;
tree_node *prev=0;
while(cur!=0) {
prev=cur;
cur=cur->next_sibling;
erase_children(pre_order_iterator(prev));
kp::destructor(&prev->data);
alloc_.deallocate(prev,1);
}
it.node->first_child=0;
it.node->last_child=0;
}
template<class T, class tree_node_allocator>
template<class iter>
iter tree<T, tree_node_allocator>::erase(iter it)
{
tree_node *cur=it.node;
assert(cur!=head);
iter ret=it;
ret.skip_children();
++ret;
erase_children(it);
if(cur->prev_sibling==0) {
cur->parent->first_child=cur->next_sibling;
}
else {
cur->prev_sibling->next_sibling=cur->next_sibling;
}
if(cur->next_sibling==0) {
cur->parent->last_child=cur->prev_sibling;
}
else {
cur->next_sibling->prev_sibling=cur->prev_sibling;
}
kp::destructor(&cur->data);
alloc_.deallocate(cur,1);
return ret;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::begin() const
{
return pre_order_iterator(head->next_sibling);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::end() const
{
return pre_order_iterator(feet);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::begin_post() const
{
tree_node *tmp=head->next_sibling;
if(tmp!=feet) {
while(tmp->first_child)
tmp=tmp->first_child;
}
return post_order_iterator(tmp);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::end_post() const
{
return post_order_iterator(feet);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::begin_fixed(const iterator_base& pos, unsigned int dp) const
{
tree_node *tmp=pos.node;
unsigned int curdepth=0;
while(curdepth<dp) { // go down one level
while(tmp->first_child==0) {
tmp=tmp->next_sibling;
if(tmp==0)
throw std::range_error("tree: begin_fixed out of range");
}
tmp=tmp->first_child;
++curdepth;
}
return tmp;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::end_fixed(const iterator_base& pos, unsigned int dp) const
{
assert(1==0); // FIXME: not correct yet
tree_node *tmp=pos.node;
unsigned int curdepth=1;
while(curdepth<dp) { // go down one level
while(tmp->first_child==0) {
tmp=tmp->next_sibling;
if(tmp==0)
throw std::range_error("tree: end_fixed out of range");
}
tmp=tmp->first_child;
++curdepth;
}
return tmp;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::begin(const iterator_base& pos) const
{
if(pos.node->first_child==0) {
return end(pos);
}
return pos.node->first_child;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::end(const iterator_base& pos) const
{
sibling_iterator ret(0);
ret.parent_=pos.node;
return ret;
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::parent(iter position) const
{
assert(position.node!=0);
return iter(position.node->parent);
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::previous_sibling(iter position) const
{
assert(position.node!=0);
iter ret(position);
ret.node=position.node->prev_sibling;
return ret;
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::next_sibling(iter position) const
{
assert(position.node!=0);
iter ret(position);
ret.node=position.node->next_sibling;
return ret;
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::next_at_same_depth(iter position) const
{
assert(position.node!=0);
iter ret(position);
if(position.node->next_sibling) {
ret.node=position.node->next_sibling;
}
else {
int relative_depth=0;
upper:
do {
ret.node=ret.node->parent;
if(ret.node==0) return ret;
--relative_depth;
} while(ret.node->next_sibling==0);
lower:
ret.node=ret.node->next_sibling;
while(ret.node->first_child==0) {
if(ret.node->next_sibling==0)
goto upper;
ret.node=ret.node->next_sibling;
if(ret.node==0) return ret;
}
while(relative_depth<0 && ret.node->first_child!=0) {
ret.node=ret.node->first_child;
++relative_depth;
}
if(relative_depth<0) {
if(ret.node->next_sibling==0) goto upper;
else goto lower;
}
}
return ret;
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::append_child(iter position)
{
assert(position.node!=head);
tree_node* tmp = alloc_.allocate(1,0);
kp::constructor(&tmp->data);
tmp->first_child=0;
tmp->last_child=0;
tmp->parent=position.node;
if(position.node->last_child!=0) {
position.node->last_child->next_sibling=tmp;
}
else {
position.node->first_child=tmp;
}
tmp->prev_sibling=position.node->last_child;
position.node->last_child=tmp;
tmp->next_sibling=0;
return tmp;
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::append_child(iter position, const T& x)
{
// If your program fails here you probably used 'append_child' to add the top
// node to an empty tree. From version 1.45 the top element should be added
// using 'insert'. See the documentation for further information, and sorry about
// the API change.
assert(position.node!=head);
tree_node* tmp = alloc_.allocate(1,0);
kp::constructor(&tmp->data, x);
tmp->first_child=0;
tmp->last_child=0;
tmp->parent=position.node;
if(position.node->last_child!=0) {
position.node->last_child->next_sibling=tmp;
}
else {
position.node->first_child=tmp;
}
tmp->prev_sibling=position.node->last_child;
position.node->last_child=tmp;
tmp->next_sibling=0;
return tmp;
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::append_child(iter position, iter other)
{
assert(position.node!=head);
sibling_iterator aargh=append_child(position, value_type());
return replace(aargh, other);
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::append_children(iter position, sibling_iterator from, sibling_iterator to)
{
iter ret=from;
while(from!=to) {
insert_subtree(position.end(), from);
++from;
}
return ret;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::set_head(const T& x)
{
assert(head->next_sibling==feet);
return insert(iterator(feet), x);
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert(iter position, const T& x)
{
if(position.node==0) {
position.node=feet; // Backward compatibility: when calling insert on a null node,
// insert before the feet.
}
tree_node* tmp = alloc_.allocate(1,0);
kp::constructor(&tmp->data, x);
tmp->first_child=0;
tmp->last_child=0;
tmp->parent=position.node->parent;
tmp->next_sibling=position.node;
tmp->prev_sibling=position.node->prev_sibling;
position.node->prev_sibling=tmp;
if(tmp->prev_sibling==0)
tmp->parent->first_child=tmp;
else
tmp->prev_sibling->next_sibling=tmp;
return tmp;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::insert(sibling_iterator position, const T& x)
{
tree_node* tmp = alloc_.allocate(1,0);
kp::constructor(&tmp->data, x);
tmp->first_child=0;
tmp->last_child=0;
tmp->next_sibling=position.node;
if(position.node==0) { // iterator points to end of a subtree
tmp->parent=position.parent_;
tmp->prev_sibling=position.range_last();
tmp->parent->last_child=tmp;
}
else {
tmp->parent=position.node->parent;
tmp->prev_sibling=position.node->prev_sibling;
position.node->prev_sibling=tmp;
}
if(tmp->prev_sibling==0)
tmp->parent->first_child=tmp;
else
tmp->prev_sibling->next_sibling=tmp;
return tmp;
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert_after(iter position, const T& x)
{
tree_node* tmp = alloc_.allocate(1,0);
kp::constructor(&tmp->data, x);
tmp->first_child=0;
tmp->last_child=0;
tmp->parent=position.node->parent;
tmp->prev_sibling=position.node;
tmp->next_sibling=position.node->next_sibling;
position.node->next_sibling=tmp;
if(tmp->next_sibling==0) {
if(tmp->parent) // when adding nodes at the head, there is no parent
tmp->parent->last_child=tmp;
}
else {
tmp->next_sibling->prev_sibling=tmp;
}
return tmp;
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::insert_subtree(iter position, const iterator_base& subtree)
{
// insert dummy
iter it=insert(position, value_type());
// replace dummy with subtree
return replace(it, subtree);
}
// template <class T, class tree_node_allocator>
// template <class iter>
// iter tree<T, tree_node_allocator>::insert_subtree(sibling_iterator position, iter subtree)
// {
// // insert dummy
// iter it(insert(position, value_type()));
// // replace dummy with subtree
// return replace(it, subtree);
// }
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::replace(iter position, const T& x)
{
kp::destructor(&position.node->data);
kp::constructor(&position.node->data, x);
return position;
}
template <class T, class tree_node_allocator>
template <class iter>
iter tree<T, tree_node_allocator>::replace(iter position, const iterator_base& from)
{
assert(position.node!=head);
tree_node *current_from=from.node;
tree_node *start_from=from.node;
tree_node *current_to =position.node;
// replace the node at position with head of the replacement tree at from
erase_children(position);
tree_node* tmp = alloc_.allocate(1,0);
kp::constructor(&tmp->data, (*from));
tmp->first_child=0;
tmp->last_child=0;
if(current_to->prev_sibling==0) {
current_to->parent->first_child=tmp;
}
else {
current_to->prev_sibling->next_sibling=tmp;
}
tmp->prev_sibling=current_to->prev_sibling;
if(current_to->next_sibling==0) {
current_to->parent->last_child=tmp;
}
else {
current_to->next_sibling->prev_sibling=tmp;
}
tmp->next_sibling=current_to->next_sibling;
tmp->parent=current_to->parent;
kp::destructor(&current_to->data);
alloc_.deallocate(current_to,1);
current_to=tmp;
// only at this stage can we fix 'last'
tree_node *last=from.node->next_sibling;
pre_order_iterator toit=tmp;
// copy all children
do {
assert(current_from!=0);
if(current_from->first_child != 0) {
current_from=current_from->first_child;
toit=append_child(toit, current_from->data);
}
else {
while(current_from->next_sibling==0 && current_from!=start_from) {
current_from=current_from->parent;
toit=parent(toit);
assert(current_from!=0);
}
current_from=current_from->next_sibling;
if(current_from!=last) {
toit=append_child(parent(toit), current_from->data);
}
}
} while(current_from!=last);
return current_to;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::replace(
sibling_iterator orig_begin,
sibling_iterator orig_end,
sibling_iterator new_begin,
sibling_iterator new_end)
{
tree_node *orig_first=orig_begin.node;
tree_node *new_first=new_begin.node;
tree_node *orig_last=orig_first;
while((++orig_begin)!=orig_end)
orig_last=orig_last->next_sibling;
tree_node *new_last=new_first;
while((++new_begin)!=new_end)
new_last=new_last->next_sibling;
// insert all siblings in new_first..new_last before orig_first
bool first=true;
pre_order_iterator ret;
while(1==1) {
pre_order_iterator tt=insert_subtree(pre_order_iterator(orig_first), pre_order_iterator(new_first));
if(first) {
ret=tt;
first=false;
}
if(new_first==new_last)
break;
new_first=new_first->next_sibling;
}
// erase old range of siblings
bool last=false;
tree_node *next=orig_first;
while(1==1) {
if(next==orig_last)
last=true;
next=next->next_sibling;
erase((pre_order_iterator)orig_first);
if(last)
break;
orig_first=next;
}
return ret;
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::flatten(iter position)
{
if(position.node->first_child==0)
return position;
tree_node *tmp=position.node->first_child;
while(tmp) {
tmp->parent=position.node->parent;
tmp=tmp->next_sibling;
}
if(position.node->next_sibling) {
position.node->last_child->next_sibling=position.node->next_sibling;
position.node->next_sibling->prev_sibling=position.node->last_child;
}
else {
position.node->parent->last_child=position.node->last_child;
}
position.node->next_sibling=position.node->first_child;
position.node->next_sibling->prev_sibling=position.node;
position.node->first_child=0;
position.node->last_child=0;
return position;
}
template <class T, class tree_node_allocator>
template <typename iter>
iter tree<T, tree_node_allocator>::reparent(iter position, sibling_iterator begin, sibling_iterator end)
{
tree_node *first=begin.node;
tree_node *last=first;
if(begin==end) return begin;
// determine last node
while((++begin)!=end) {
last=last->next_sibling;
}
// move subtree
if(first->prev_sibling==0) {
first->parent->first_child=last->next_sibling;
}
else {
first->prev_sibling->next_sibling=last->next_sibling;
}
if(last->next_sibling==0) {
last->parent->last_child=first->prev_sibling;
}
else {
last->next_sibling->prev_sibling=first->prev_sibling;
}
if(position.node->first_child==0) {
position.node->first_child=first;
position.node->last_child=last;
first->prev_sibling=0;
}
else {
position.node->last_child->next_sibling=first;
first->prev_sibling=position.node->last_child;
position.node->last_child=last;
}
last->next_sibling=0;
tree_node *pos=first;
while(1==1) {
pos->parent=position.node;
if(pos==last) break;
pos=pos->next_sibling;
}
return first;
}
template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::reparent(iter position, iter from)
{
if(from.node->first_child==0) return position;
return reparent(position, from.node->first_child, end(from));
}
template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::move_before(iter target, iter source)
{
tree_node *dst=target.node;
tree_node *src=source.node;
assert(dst);
assert(src);
if(dst==src) return source;
// take src out of the tree
if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
else src->parent->first_child=src->next_sibling;
if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
else src->parent->last_child=src->prev_sibling;
// connect it to the new point
if(dst->prev_sibling!=0) dst->prev_sibling->next_sibling=src;
else dst->parent->first_child=src;
src->prev_sibling=dst->prev_sibling;
dst->prev_sibling=src;
src->next_sibling=dst;
src->parent=dst->parent;
return src;
}
template <class T, class tree_node_allocator>
template <typename iter> iter tree<T, tree_node_allocator>::move_ontop(iter target, iter source)
{
tree_node *dst=target.node;
tree_node *src=source.node;
assert(dst);
assert(src);
if(dst==src) return source;
// remember connection points
tree_node *b_prev_sibling=dst->prev_sibling;
tree_node *b_next_sibling=dst->next_sibling;
tree_node *b_parent=dst->parent;
// remove target
erase(target);
// take src out of the tree
if(src->prev_sibling!=0) src->prev_sibling->next_sibling=src->next_sibling;
else src->parent->first_child=src->next_sibling;
if(src->next_sibling!=0) src->next_sibling->prev_sibling=src->prev_sibling;
else src->parent->last_child=src->prev_sibling;
// connect it to the new point
if(b_prev_sibling!=0) b_prev_sibling->next_sibling=src;
else b_parent->first_child=src;
if(b_next_sibling!=0) b_next_sibling->prev_sibling=src;
else b_parent->last_child=src;
src->prev_sibling=b_prev_sibling;
src->next_sibling=b_next_sibling;
src->parent=b_parent;
return src;
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::merge(sibling_iterator to1, sibling_iterator to2,
sibling_iterator from1, sibling_iterator from2,
bool duplicate_leaves)
{
sibling_iterator fnd;
while(from1!=from2) {
if((fnd=std::find(to1, to2, (*from1))) != to2) { // element found
if(from1.begin()==from1.end()) { // full depth reached
if(duplicate_leaves)
append_child(parent(to1), (*from1));
}
else { // descend further
merge(fnd.begin(), fnd.end(), from1.begin(), from1.end(), duplicate_leaves);
}
}
else { // element missing
insert_subtree(to2, from1);
}
++from1;
}
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to, bool deep)
{
std::less<T> comp;
sort(from, to, comp, deep);
}
template <class T, class tree_node_allocator>
template <class StrictWeakOrdering>
void tree<T, tree_node_allocator>::sort(sibling_iterator from, sibling_iterator to,
StrictWeakOrdering comp, bool deep)
{
if(from==to) return;
// make list of sorted nodes
// CHECK: if multiset stores equivalent nodes in the order in which they
// are inserted, then this routine should be called 'stable_sort'.
std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> > nodes;
sibling_iterator it=from, it2=to;
while(it != to) {
nodes.insert(it.node);
++it;
}
// reassemble
--it2;
// prev and next are the nodes before and after the sorted range
tree_node *prev=from.node->prev_sibling;
tree_node *next=it2.node->next_sibling;
typename std::multiset<tree_node *, compare_nodes<StrictWeakOrdering> >::iterator nit=nodes.begin(), eit=nodes.end();
if(prev==0) {
if((*nit)->parent!=0) // to catch "sorting the head" situations, when there is no parent
(*nit)->parent->first_child=(*nit);
}
else prev->next_sibling=(*nit);
--eit;
while(nit!=eit) {
(*nit)->prev_sibling=prev;
if(prev)
prev->next_sibling=(*nit);
prev=(*nit);
++nit;
}
// prev now points to the last-but-one node in the sorted range
if(prev)
prev->next_sibling=(*eit);
// eit points to the last node in the sorted range.
(*eit)->next_sibling=next;
(*eit)->prev_sibling=prev; // missed in the loop above
if(next==0) {
if((*eit)->parent!=0) // to catch "sorting the head" situations, when there is no parent
(*eit)->parent->last_child=(*eit);
}
else next->prev_sibling=(*eit);
if(deep) { // sort the children of each node too
sibling_iterator bcs(*nodes.begin());
sibling_iterator ecs(*eit);
++ecs;
while(bcs!=ecs) {
sort(begin(bcs), end(bcs), comp, deep);
++bcs;
}
}
}
template <class T, class tree_node_allocator>
template <typename iter>
bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_) const
{
std::equal_to<T> comp;
return equal(one_, two, three_, comp);
}
template <class T, class tree_node_allocator>
template <typename iter>
bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_) const
{
std::equal_to<T> comp;
return equal_subtree(one_, two_, comp);
}
template <class T, class tree_node_allocator>
template <typename iter, class BinaryPredicate>
bool tree<T, tree_node_allocator>::equal(const iter& one_, const iter& two, const iter& three_, BinaryPredicate fun) const
{
pre_order_iterator one(one_), three(three_);
// if(one==two && is_valid(three) && three.number_of_children()!=0)
// return false;
while(one!=two && is_valid(three)) {
if(!fun(*one,*three))
return false;
if(one.number_of_children()!=three.number_of_children())
return false;
++one;
++three;
}
return true;
}
template <class T, class tree_node_allocator>
template <typename iter, class BinaryPredicate>
bool tree<T, tree_node_allocator>::equal_subtree(const iter& one_, const iter& two_, BinaryPredicate fun) const
{
pre_order_iterator one(one_), two(two_);
if(!fun(*one,*two)) return false;
if(number_of_children(one)!=number_of_children(two)) return false;
return equal(begin(one),end(one),begin(two),fun);
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator> tree<T, tree_node_allocator>::subtree(sibling_iterator from, sibling_iterator to) const
{
tree tmp;
tmp.set_head(value_type());
tmp.replace(tmp.begin(), tmp.end(), from, to);
return tmp;
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::subtree(tree& tmp, sibling_iterator from, sibling_iterator to) const
{
tmp.set_head(value_type());
tmp.replace(tmp.begin(), tmp.end(), from, to);
}
template <class T, class tree_node_allocator>
int tree<T, tree_node_allocator>::size() const
{
int i=0;
pre_order_iterator it=begin(), eit=end();
while(it!=eit) {
++i;
++it;
}
return i;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::empty() const
{
pre_order_iterator it=begin(), eit=end();
return (it==eit);
}
template <class T, class tree_node_allocator>
int tree<T, tree_node_allocator>::depth(const iterator_base& it) const
{
tree_node* pos=it.node;
assert(pos!=0);
int ret=0;
while(pos->parent!=0) {
pos=pos->parent;
++ret;
}
return ret;
}
template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::number_of_children(const iterator_base& it) const
{
tree_node *pos=it.node->first_child;
if(pos==0) return 0;
unsigned int ret=1;
// while(pos!=it.node->last_child) {
// ++ret;
// pos=pos->next_sibling;
// }
while((pos=pos->next_sibling))
++ret;
return ret;
}
template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::number_of_siblings(const iterator_base& it) const
{
tree_node *pos=it.node;
unsigned int ret=0;
while(pos->next_sibling &&
pos->next_sibling!=head &&
pos->next_sibling!=feet) {
++ret;
pos=pos->next_sibling;
}
return ret;
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::swap(sibling_iterator it)
{
tree_node *nxt=it.node->next_sibling;
if(nxt) {
if(it.node->prev_sibling)
it.node->prev_sibling->next_sibling=nxt;
else
it.node->parent->first_child=nxt;
nxt->prev_sibling=it.node->prev_sibling;
tree_node *nxtnxt=nxt->next_sibling;
if(nxtnxt)
nxtnxt->prev_sibling=it.node;
else
it.node->parent->last_child=it.node;
nxt->next_sibling=it.node;
it.node->prev_sibling=nxt;
it.node->next_sibling=nxtnxt;
}
}
// template <class BinaryPredicate>
// tree<T, tree_node_allocator>::iterator tree<T, tree_node_allocator>::find_subtree(
// sibling_iterator subfrom, sibling_iterator subto, iterator from, iterator to,
// BinaryPredicate fun) const
// {
// assert(1==0); // this routine is not finished yet.
// while(from!=to) {
// if(fun(*subfrom, *from)) {
//
// }
// }
// return to;
// }
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::is_in_subtree(const iterator_base& it, const iterator_base& begin,
const iterator_base& end) const
{
// FIXME: this should be optimised.
pre_order_iterator tmp=begin;
while(tmp!=end) {
if(tmp==it) return true;
++tmp;
}
return false;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::is_valid(const iterator_base& it) const
{
if(it.node==0 || it.node==feet) return false;
else return true;
}
template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::index(sibling_iterator it) const
{
unsigned int ind=0;
if(it.node->parent==0) {
while(it.node->prev_sibling!=head) {
it.node=it.node->prev_sibling;
++ind;
}
}
else {
while(it.node->prev_sibling!=0) {
it.node=it.node->prev_sibling;
++ind;
}
}
return ind;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::child(const iterator_base& it, unsigned int num) const
{
tree_node *tmp=it.node->first_child;
while(num--) {
assert(tmp!=0);
tmp=tmp->next_sibling;
}
return tmp;
}
// Iterator base
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::iterator_base::iterator_base()
: node(0), skip_current_children_(false)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::iterator_base::iterator_base(tree_node *tn)
: node(tn), skip_current_children_(false)
{
}
template <class T, class tree_node_allocator>
T& tree<T, tree_node_allocator>::iterator_base::operator*() const
{
return node->data;
}
template <class T, class tree_node_allocator>
T* tree<T, tree_node_allocator>::iterator_base::operator->() const
{
return &(node->data);
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::post_order_iterator::operator!=(const post_order_iterator& other) const
{
if(other.node!=this->node) return true;
else return false;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::post_order_iterator::operator==(const post_order_iterator& other) const
{
if(other.node==this->node) return true;
else return false;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::pre_order_iterator::operator!=(const pre_order_iterator& other) const
{
if(other.node!=this->node) return true;
else return false;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::pre_order_iterator::operator==(const pre_order_iterator& other) const
{
if(other.node==this->node) return true;
else return false;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::sibling_iterator::operator!=(const sibling_iterator& other) const
{
if(other.node!=this->node) return true;
else return false;
}
template <class T, class tree_node_allocator>
bool tree<T, tree_node_allocator>::sibling_iterator::operator==(const sibling_iterator& other) const
{
if(other.node==this->node) return true;
else return false;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::iterator_base::begin() const
{
sibling_iterator ret(node->first_child);
ret.parent_=this->node;
return ret;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::iterator_base::end() const
{
sibling_iterator ret(0);
ret.parent_=node;
return ret;
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::iterator_base::skip_children()
{
skip_current_children_=true;
}
template <class T, class tree_node_allocator>
unsigned int tree<T, tree_node_allocator>::iterator_base::number_of_children() const
{
tree_node *pos=node->first_child;
if(pos==0) return 0;
unsigned int ret=1;
while(pos!=node->last_child) {
++ret;
pos=pos->next_sibling;
}
return ret;
}
// Pre-order iterator
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator()
: iterator_base(0)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(tree_node *tn)
: iterator_base(tn)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(const iterator_base &other)
: iterator_base(other.node)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::pre_order_iterator::pre_order_iterator(const sibling_iterator& other)
: iterator_base(other.node)
{
if(this->node==0) {
if(other.range_last()!=0)
this->node=other.range_last();
else
this->node=other.parent_;
this->skip_children();
++(*this);
}
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator++()
{
assert(this->node!=0);
if(!this->skip_current_children_ && this->node->first_child != 0) {
this->node=this->node->first_child;
}
else {
this->skip_current_children_=false;
while(this->node->next_sibling==0) {
this->node=this->node->parent;
if(this->node==0)
return *this;
}
this->node=this->node->next_sibling;
}
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator--()
{
assert(this->node!=0);
if(this->node->prev_sibling) {
this->node=this->node->prev_sibling;
while(this->node->last_child)
this->node=this->node->last_child;
}
else {
this->node=this->node->parent;
if(this->node==0)
return *this;
}
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::pre_order_iterator::operator++(int n)
{
pre_order_iterator copy = *this;
++(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator tree<T, tree_node_allocator>::pre_order_iterator::operator--(int n)
{
pre_order_iterator copy = *this;
--(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator+=(unsigned int num)
{
while(num>0) {
++(*this);
--num;
}
return (*this);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::pre_order_iterator& tree<T, tree_node_allocator>::pre_order_iterator::operator-=(unsigned int num)
{
while(num>0) {
--(*this);
--num;
}
return (*this);
}
// Post-order iterator
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator()
: iterator_base(0)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(tree_node *tn)
: iterator_base(tn)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(const iterator_base &other)
: iterator_base(other.node)
{
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::post_order_iterator::post_order_iterator(const sibling_iterator& other)
: iterator_base(other.node)
{
if(this->node==0) {
if(other.range_last()!=0)
this->node=other.range_last();
else
this->node=other.parent_;
this->skip_children();
++(*this);
}
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator++()
{
assert(this->node!=0);
if(this->node->next_sibling==0)
this->node=this->node->parent;
else {
this->node=this->node->next_sibling;
if(this->skip_current_children_) {
this->skip_current_children_=false;
}
else {
while(this->node->first_child)
this->node=this->node->first_child;
}
}
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator--()
{
assert(this->node!=0);
if(this->skip_current_children_ || this->node->last_child==0) {
this->skip_current_children_=false;
while(this->node->prev_sibling==0)
this->node=this->node->parent;
this->node=this->node->prev_sibling;
}
else {
this->node=this->node->last_child;
}
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::post_order_iterator::operator++(int)
{
post_order_iterator copy = *this;
++(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator tree<T, tree_node_allocator>::post_order_iterator::operator--(int)
{
post_order_iterator copy = *this;
--(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator+=(unsigned int num)
{
while(num>0) {
++(*this);
--num;
}
return (*this);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::post_order_iterator& tree<T, tree_node_allocator>::post_order_iterator::operator-=(unsigned int num)
{
while(num>0) {
--(*this);
--num;
}
return (*this);
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::post_order_iterator::descend_all()
{
assert(this->node!=0);
while(this->node->first_child)
this->node=this->node->first_child;
}
// Fixed depth iterator
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator()
: iterator_base()
{
set_first_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(tree_node *tn)
: iterator_base(tn)
{
set_first_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const iterator_base& other)
: iterator_base(other.node)
{
set_first_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const sibling_iterator& other)
: iterator_base(other.node), first_parent_(other.parent_)
{
find_leftmost_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::fixed_depth_iterator::fixed_depth_iterator(const fixed_depth_iterator& other)
: iterator_base(other.node), first_parent_(other.first_parent_)
{
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::fixed_depth_iterator::set_first_parent_()
{
return; // FIXME: we do not use first_parent_ yet, and it actually needs some serious reworking if
// it is ever to work at the 'head' level.
first_parent_=0;
if(this->node==0) return;
if(this->node->parent!=0)
first_parent_=this->node->parent;
if(first_parent_)
find_leftmost_parent_();
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::fixed_depth_iterator::find_leftmost_parent_()
{
return; // FIXME: see 'set_first_parent()'
tree_node *tmppar=first_parent_;
while(tmppar->prev_sibling) {
tmppar=tmppar->prev_sibling;
if(tmppar->first_child)
first_parent_=tmppar;
}
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator++()
{
assert(this->node!=0);
if(this->node->next_sibling) {
this->node=this->node->next_sibling;
}
else {
int relative_depth=0;
upper:
do {
this->node=this->node->parent;
if(this->node==0) return *this;
--relative_depth;
} while(this->node->next_sibling==0);
lower:
this->node=this->node->next_sibling;
while(this->node->first_child==0) {
if(this->node->next_sibling==0)
goto upper;
this->node=this->node->next_sibling;
if(this->node==0) return *this;
}
while(relative_depth<0 && this->node->first_child!=0) {
this->node=this->node->first_child;
++relative_depth;
}
if(relative_depth<0) {
if(this->node->next_sibling==0) goto upper;
else goto lower;
}
}
return *this;
// if(this->node->next_sibling!=0) {
// this->node=this->node->next_sibling;
// assert(this->node!=0);
// if(this->node->parent==0 && this->node->next_sibling==0) // feet element
// this->node=0;
// }
// else {
// tree_node *par=this->node->parent;
// do {
// par=par->next_sibling;
// if(par==0) { // FIXME: need to keep track of this!
// this->node=0;
// return *this;
// }
// } while(par->first_child==0);
// this->node=par->first_child;
// }
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator--()
{
assert(this->node!=0);
if(this->node->prev_sibling!=0) {
this->node=this->node->prev_sibling;
assert(this->node!=0);
if(this->node->parent==0 && this->node->prev_sibling==0) // head element
this->node=0;
}
else {
tree_node *par=this->node->parent;
do {
par=par->prev_sibling;
if(par==0) { // FIXME: need to keep track of this!
this->node=0;
return *this;
}
} while(par->last_child==0);
this->node=par->last_child;
}
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::fixed_depth_iterator::operator++(int)
{
fixed_depth_iterator copy = *this;
++(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator tree<T, tree_node_allocator>::fixed_depth_iterator::operator--(int)
{
fixed_depth_iterator copy = *this;
--(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator-=(unsigned int num)
{
while(num>0) {
--(*this);
--(num);
}
return (*this);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::fixed_depth_iterator& tree<T, tree_node_allocator>::fixed_depth_iterator::operator+=(unsigned int num)
{
while(num>0) {
++(*this);
--(num);
}
return *this;
}
// FIXME: add the other members of fixed_depth_iterator.
// Sibling iterator
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator()
: iterator_base()
{
set_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(tree_node *tn)
: iterator_base(tn)
{
set_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(const iterator_base& other)
: iterator_base(other.node)
{
set_parent_();
}
template <class T, class tree_node_allocator>
tree<T, tree_node_allocator>::sibling_iterator::sibling_iterator(const sibling_iterator& other)
: iterator_base(other), parent_(other.parent_)
{
}
template <class T, class tree_node_allocator>
void tree<T, tree_node_allocator>::sibling_iterator::set_parent_()
{
parent_=0;
if(this->node==0) return;
if(this->node->parent!=0)
parent_=this->node->parent;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator++()
{
if(this->node)
this->node=this->node->next_sibling;
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator--()
{
if(this->node) this->node=this->node->prev_sibling;
else {
assert(parent_);
this->node=parent_->last_child;
}
return *this;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling_iterator::operator++(int)
{
sibling_iterator copy = *this;
++(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator tree<T, tree_node_allocator>::sibling_iterator::operator--(int)
{
sibling_iterator copy = *this;
--(*this);
return copy;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator+=(unsigned int num)
{
while(num>0) {
++(*this);
--num;
}
return (*this);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::sibling_iterator& tree<T, tree_node_allocator>::sibling_iterator::operator-=(unsigned int num)
{
while(num>0) {
--(*this);
--num;
}
return (*this);
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::tree_node *tree<T, tree_node_allocator>::sibling_iterator::range_first() const
{
tree_node *tmp=parent_->first_child;
return tmp;
}
template <class T, class tree_node_allocator>
typename tree<T, tree_node_allocator>::tree_node *tree<T, tree_node_allocator>::sibling_iterator::range_last() const
{
return parent_->last_child;
}
#endif
// Local variables:
// default-tab-width: 3
// End: